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ABSTRACT
In this paper, we discuss a unification of several well-known frequency domain beamforming methods
into one working principle. The methods under consideration include functional beamforming,
asymptotic beamforming, adaptive beamforming and conventional beamforming. Common to most of
these methods is the underlying eigenvalue decomposition of the cross-spectral matrix. Introducing
a weighted Hölder mean in terms of these eigenvalues for every map point, each of the above
methods is represented by a certain real power value p. Going from the case p=1 of conventional
beamforming to lower power values results in the attenuation of side lobes and sharpening of the
main lobes in the corresponding beamforming map. We demonstrate this and other effects using
real-world measurements.
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1. INTRODUCTION

For many years now, beamforming has been a widely accepted and robust acoustic source mapping
technique when using microphone arrays with a limited number of sensors. In very broad terms,
it can be described to work as a spatial sound receiver that smoothly either filters out or favors
sound emanating from the map locations. In the frequency domain, this so-called conventional
beamforming produces maps that exhibit only low spatial resolution together with a limited dynamic
range, it is therefore often subject to further post-processing procedures. Incorporating conventional
beamforming in a family of beamforming algorithms that depend on an exponent parameter,
Dougherty [1] dramatically increased both resolution and dynamic range, and the requirements
for this so-called functional beamforming are not extraordinary. This paper aims at motivating a
completion of this point view and demonstrates the effects of leaving the range of conventional
functional beamforming, reaching adaptive beamforming and presents even examples beyond the
latter in this extended family of beamforming methods.
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2. THEORY

Suppose there are M microphones in a phased array with measurable complex sound pressures
p1, . . . , pM ∈ C. The array cross spectral matrix C ∈ CM×M of these signals is composed by the
elements

Ci j = E
[
pi p∗j

]
, (1)

where ·∗ denotes complex conjugation, and E[·] is expectation. In principle, the methods of this paper
are still applicable, if C would be replaced by something derived from it that adheres to its properties
of self-adjointness

C ji = C∗i j (2)

and non-negativity
zHCz ≥ 0 ∀z ∈ CM, (3)

here zH denotes the conjugate transpose of z. For example, C could be the result of a diagonal
optimization procedure (see [2,3]), an orthogonal beamforming filter (see [4]), or simply a correlation
to a reference signal.

Let

C =

M∑
i=1

λivivH
i (4)

be the decomposition of C with respect to its eigenvalues, i.e.

Cvi = λivi, vi ∈ C
M\{0}, vH

i v j = δi j. (5)

Since C is self-adjoint and non-negative, all eigenvalues are non-negative real numbers,

λi ≥ 0. (6)

Now, given an arbitrary steering vector g associated to a map point, the value b1(g) of the conventional
beamforming map at this point is

b1(g) = gHCg = gH

 M∑
i=1

λivivH
i

 g =

M∑
i=1

λi

∣∣∣vH
i g

∣∣∣2 . (7)

Again, we emphasize the universality of the formulation: there are many definitions of steering
vectors in the literature, all of which have their strengths and weaknesses (see [5]). Even formulations
that allow for a compensation of shear-layer effects are feasible (see [6–9]).

Using the notation
ρi(g) :=

∣∣∣vH
i g

∣∣∣2 , (8)

we readily have

b1(g) =

M∑
i=1

λi ρi(g). (9)

Moreover, since v1, . . . , vM form an orthonormal basis of CM, we observe

ρ(g) :=
M∑

i=1

ρi(g) = ‖g‖22 > 0. (10)

This leads to the validity of

b1(g) = ρ(g)
M∑

i=1

ρi(g)
ρ(g)

λi. (11)



Inspecting this equation, conventional beamforming with respect to a steering vector g can – at least
up to the factor ρ(g) – be interpreted as a weighted arithmetic mean of the eigenvalues λi with weights

wi(g) :=
ρi(g)
ρ(g)

,

M∑
i=1

wi(g) = 1. (12)

We now assume
λi > 0 ∀i ∈ {1, . . . ,M} , (13)

and generalize (11) using the weighted Hölder mean (or weighted power mean), that is, for each
p ∈ R, p , 0, we introduce

bp(g) := ρ(g)

 M∑
i=1

wi(g)λp
i

1/p

. (14)

Given properties (12) and (13), it can be shown that for every fixed g the function

R\{0} 3 p 7→ bp(g) ∈ R (15)

is continuous, even its discontinuity at zero is removable:

b0(g) := lim
p→0

bp(g) = ρ(g)
M∏

i=1

λ
wi(g)
i = ρ(g) exp

 M∑
i=1

wi(g) ln (λi)

 . (16)

Another interesting property of the weighted power mean leads to

bp(g) ≤ bq(g) (17)

if p < q, which results in

min(λ1, . . . , λM) ≤
bp(g)

‖g‖22
≤ max(λ1, . . . , λM), (18)

since
lim

p→−∞
bp(g) = ρ(g) min(λ1, . . . , λM), lim

p→∞
bp(g) = ρ(g) max(λ1, . . . , λM). (19)

As a result, when using the type I formulation of steering vectors (see [5]), the dynamic range of
any map bp in this one-parameter family of beamforming maps has a theoretical upper limit which is
solely determined by the largest and smallest eigenvalue of C.

Let us discuss the family bp, p ∈ R in more detail. Trivially, conventional beamforming coincides
with the case p = 1, and, whenever we are interested in suppressing side-lobes of this particular map,
equation (17) suggests to consider maps bp with p < 1. By choosing p = 1/ν with ν ≥ 1, the map
bp corresponds to functional beamforming with ν (see [1]). Moreover, adaptive beamforming and
asymptotic beamforming can be identified as the special cases b−1 and b0, respectively (cf. [10]).
Also, it is worth noticing, that every map value is expected to change continuously with the power p,
and we will call this unified approach power beamforming throughout this paper.

In practice, however, any error in computing the weights wi(g) leads to a significant computational
error due to the sensitive nature of power beamforming, especially when considering negative p. More
precisely, those summands that correspond to smaller eigenvalues - which are usually not considered
to contain relevant information on the acoustics sources (cf. [4]) - start dominating the sum given that
their weights are non-trivial. Usually, this issue is addressed by adding a small value ε > 0 to each
eigenvalue, or equivalently, to consider

C̄ = C + ε · diag(1, . . . , 1). (20)

Therefore, this technique is called diagonal loading and was used extensively in the case of adaptive
beamforming, p = −1 (see [11–14]). Another interesting approach addresses the uncertainty of the
steering vectors themselves, by designing a robust adaptive beamformer to maintain an acceptable
accuracy within an uncertainty ellipsoid (see [15]).



3. MEASUREMENTS

All examples were produced using Mikado (see figure 1), a hand-held acoustic camera which consists
of 96 MEMS microphones arranged in two sunflower spirals (see [16–18]) with a relative angular
offset of π/3 around the optical cameras, its diameter is approximately 0.35m. The microphone

Figure 1: Mikado, a hand-held acoustic camera which consists of 96 MEMS microphones arranged
in two sunflower spirals

positions are visualized in Figure 2. Moreover, we plotted the density function of all microphone
distances there.
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Figure 2: Microphone positions (left) and density function of microphone distances (right) of Mikado

The measurements were made in the hemi-anechoic chamber (dimensions: 6.05 × 3.35 × 2.5m)
of Technical University of Applied Sciences Wildau, Germany. The measurement object, a vacuum
cleaner, was placed at a distance of 0.6m in front of the microphone array. The vacuum cleaner was
held in a hanging position by rubber straps, the two orientations chosen are shown in Figure 3. Each
measurement took 10s using a sampling rate of 48kHz.



Figure 3: Measurement object, side orientation (left) and front orientation (right)

4. RESULTS AND DISCUSSION

A fast Fourier transform with prior von Hann weighting was applied to every microphone signal using
50% overlapping blocks of 4096 samples. All 962 elements of the array cross spectral matrix (1) were
computed by averaging over these blocks. Adopting the technique of section 2, we produced several
maps bp(g), p ∈ R over a plane of dimensions 0.44 × 0.44m using steering vector formulation I of
[5]. The resolution of all maps is 500×500px. As a reference, we additionally computed CLEAN-SC
maps (see [19]) using the same steering vector formulation and resolution.

For both orientations of the vacuum cleaner, results are assembled in the following manner in
Figure 5 and Figure 6: The rows represent different maps (from top to bottom: p = 1 (conventional
beamforming), p = 1/4 (functional beamforming with ν = 4), p = 0 (asymptotic beamforming),
p = −1/4, p = −1 (adaptive beamforming) and CLEAN-SC), the columns represent the third-octave
bands of the evaluation (from left to right: 4kHz, 6.3kHz, 8kHz, 10kHz, 16kHz).

Following each of the columns in Figure 5 and Figure 6 from higher to lower p, it is seen that
power beamforming maintains the smoothness of conventional beamforming while at the same time
improving both resolution and dynamic range of the map (cf. inequality (17)). For each of the
considered frequencies a dynamic range of at least 30dB is reached in the map, but the value of p
at which this can be exhibited differs. Due to the nature of the underlying method, the CLEAN-
SC reference maps still have unmatched dynamic range, but they lack in smoothness. More precisely,
these maps often exhibit unrealistic "quiet zones" between or around sources. This can be problematic
when trying to identify or differentiate sources and is very pronounced in the front orientation results.

From a theoretical standpoint, it is feasible to consider power values p < −1, that is to produce
beamforming maps with higher resolution and dynamic range compared to adaptive beamforming.
However, from a numerical point of view, the problems described section 2 will only intensify with
lower p. On the other end of the spectrum, it is possible to produce maps with p > 1, but it is expected
that these maps will exhibit even lower resolution and dynamic range than conventional beamforming.
Exemplifying this, we present the cases p = −2 and p = 2 in Figure 4.

Figure 4: Results beyond adaptive and conventional beamforming, side orientation, 16kHz third-
octave band, from left to right: p = −2, p = −1 (adaptive beamforming), p = 0 (asymptotic
beamforming), p = 1 (conventional beamforming), p = 2, map scale 30dB



Figure 5: Results for side orientation, rows represent different maps (from top to bottom: p = 1
(conventional beamforming), p = 1/4 (functional beamforming with ν = 4), p = 0 (asymptotic
beamforming), p = −1/4, p = −1 (adaptive beamforming), CLEAN-SC), columns represent third-
octave bands (from left to right: 4kHz, 6.3kHz, 8kHz, 10kHz, 16kHz), map scale 30dB
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Figure 6: Results for front orientation, rows represent different maps (from top to bottom: p = 1
(conventional beamforming), p = 1/4 (functional beamforming with ν = 4), p = 0 (asymptotic
beamforming), p = −1/4, p = −1 (adaptive beamforming), CLEAN-SC), columns represent third-
octave bands (from left to right: 4kHz, 6.3kHz, 8kHz, 10kHz, 16kHz), map scale 30dB
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