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Abstract

In this paper, we approach the forward exterior problem of spherical acoustical holo-
graphy, i.e. all sources are contained within a sphere of certain radius, and, using measure-
ments outside this sphere, sound field predictions are obtained from the surface out to the
farfield. In this setup, we recently proposed the reconstruction method SIFAH that makes
extensive use of spherical numerical integration together with an efficient iteration strategy
(see [6]). A characteristic feature of this method is the exact reconstruction of emissions
(read: solutions to the Helmholtz equation) up to a certain degree. We now extend this
approach to non-spherical measurements, in particular, we allow for the use of planar mi-
crophone arrays. Moreover, we require robustness with regards to microphone positioning
in this setting. Our considerations include simulations/reconstructions for various source
setups including (smoothed) circular spherical cap pistons.

1 Reconstruction of spherical waves

Let p̄ : R3→ C be the complex amplitude of a time-harmonic sound pressure field of angular
frequency ω > 0 and speed of propagation c > 0. By definition, p̄ satisfies the Helmholtz
equation

∂ 2 p̄
∂x2 +

∂ 2 p̄
∂y2 +

∂ 2 p̄
∂ z2 + k2 p̄ = 0, k =

ω

c
. (1)

Our sign convention for a time-harmonic function is t 7→ exp(iωt). For example,

p̄(x,y,z) =
exp
(
−ik
√

x2 + y2 + z2
)

√
x2 + y2 + z2

(2)
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represents an outgoing spherical wave with source in (0,0,0).
Let p : [0,∞]× [0,π]× [0,2π]→ C be p̄’s representation in spherical coordinates (r,θ ,φ).

Consequently, p satisfies

1
r2

∂

∂ r

(
r2 ∂ p

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂ p
∂θ

)
+

1
r2 sin2

θ

∂ 2 p
∂φ 2 + k2 p = 0. (3)

Solutions to this equation can be found analytically by assuming that p is separable, i.e. there
exist functions R : [0,∞]→ C, Θ : [0,π]→ C, Φ : [0,2π]→ C such that

p(r,θ ,φ) = R(r) ·Θ(θ) ·Φ(φ). (4)

In this case, equation (3) leads to

R(r) = A ·h(1)l (kr)+B ·h(2)l (kr) (5)

for some constants A,B ∈ C, l ∈ N0 = {0,1, . . .}, and h(1)l , h(2)l denote the spherical Hankel
functions of the first and second kind of degree l, respectively. Moreover, we have

Θ(θ) ·Φ(φ) = Y m
l (θ ,φ), (6)

where m ∈ {−l,−l +1 . . . , l}, and Y m
l is the spherical harmonic of degree l and order m.

We now suppose p is generated in the compact ball of radius r0 > 0 centered at (0,0,0), its
complement

D =
{
(x,y,z) ∈ R3 : r =

√
x2 + y2 + z2 > r0

}
(7)

is supposed to be source free. Motivated by Sommerfeld’s radiation condition (see [7]), we then
assume that (in the area of interest) p is (at least in good approximation) a superposition of the
first (L0 +1)2 outgoing separable solutions of (3),

p(r,θ ,φ) =
L0

∑
l=0

l

∑
m=−l

Blm ·h
(2)
l (kr) ·Y m

l (θ ,φ), Blm ∈ C. (8)

Based on a measurement of p at the positions

(ri,θi,φi) ∈ (r0,∞]× [0,π]× [0,2π], i = 1, . . . ,N (9)

in the source-free region D, we now present an approach to determine/reconstruct the (L0 +1)2

complex numbers Blm ∈ C numerically.

1.1 Integration on the sphere

In theory, we can reconstruct the coefficients Blm exactly by integrating over the unit sphere. In
fact, for a fixed r > r0, we can write (8) as

pr(θ ,φ) =
L0

∑
l=0

l

∑
m=−l

pr
lm ·Y m

l (θ ,φ), (10)
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where
pr(θ ,φ) = p(r,θ ,φ), pr

lm = Blm ·h
(2)
l (kr). (11)

Consequently,

pr
lm =

∫
S2

pr(θ ,φ)Y m
l (θ ,φ)∗dλ . (12)

One of the most common ways to arrive at a numerical approximation of this integral is by a
quadrature, i.e. we approximate it by a weighted sum over a finite collection of points

{(θ1,φ1), . . . ,(θNI ,φNI)} ⊂ [0,π]× [0,2π] (13)

on the unit sphere: ∫
S2

f (θ ,φ)dλ ≈
NI

∑
i=1

wi · f (θi,φi), wi ∈ C. (14)

The theory of quadratures for one-dimensional integrals has a long history and some results can
be extended to the two-dimensional case, a noteworthy difference however is that the distribu-
tion of points on the unit sphere alone is a non-trivial problem on its own (see [2]).

We now define the finite-dimensional vector space of spherical harmonics up to degree L as

Π
L = span{Y m

l : 0≤ l ≤ L,−l ≤ m≤ l} . (15)

Inspecting (10), we therefore have pr ∈ΠL0 for each r > r0. Since

Y m1
l1
·Y m2

l2
∈Π

l1+l2, (16)

we later require a quadrature rule for (12) to be exact at least on Π2L0 .
The most basic scheme that ensures exact integration of all spherical harmonics up to a given

degree is a Gaussian product, a repeated application of two one-dimensional quadratures. It uses
an equally spaced scheme (such as the trapezoidal method) in φ and Gauss-Legendre scheme
for θ . In order to be exact on ΠL with L odd, we would need (L+1)/2 nodes for the θ -integral
and (L+ 1) points for the φ -integration, yielding a total of (L+ 1)2/2 points on the sphere
(cf. [2]). A common critique of Gaussian products is the inequality of weights and that the
distribution of nodes is clustered around the poles (see Figure 1).

If we impose the requirement that a quadrature has equal weights and is exact for all spherical
harmonics up to a given degree, we arrive at spherical designs, which were initially defined in
[4] as a problem in algebraic combinatorics. A set of points

{(θ1,φ1), . . . ,(θNI ,φNI)} ⊂ [0,π]× [0,2π] (17)

is called a spherical L-design if for each f ∈ΠL

∫
S2

f (θ ,φ)dλ =
4π

NI

NI

∑
i=1

f (θi,φi). (18)

Obviously one wants to construct spherical designs with a minimal amount of nodes, and this is
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Figure 1: Gaussian product grid of degree L = 51 with 1352 nodes (left) and spherical L-design
with L = 51 and 1328 nodes (right)

a subject of active research (see [1, 3, 5]). For the actual coordinates used in the computations of
this paper we refer to [10] with accompanying website [9] containing the datasets of symmetric
(i.e. antipodal) spherical L-designs of odd degrees up to L = 325. Figure 1 shows an example
of degree L = 51.

1.2 Reconstruction method SIFAH

For reconstructing the coefficients Blm, we proposed the following in [6]. Choose a spherical
L-design

{(θ1,φ1), . . . ,(θNI ,φNI)} (19)

and take a measurement of p at the positions

(r,θ1,φ1), . . . ,(r,θNI ,φNI), (20)

all of which are located on a sphere with radius r > r0 in the source-free region. Then, approx-
imate the coefficients via

pr
lm ≈

4π

NI

NI

∑
i=1

p(r,θi,φi)Y m
l (θi,φi)

∗. (21)

This approximation is exact, i.e.

pr
lm =

4π

NI

NI

∑
i=1

p(r,θi,φi)Y m
l (θi,φi)

∗, (22)

for degrees
l ≤ L−L0. (23)
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Consequently, p can be reconstructed completely by taking L ≥ 2L0. Conversely, if only an
upper bound for L0 is known, say L0 ≤ Lmax, the above method ensures the exact reconstruction
of the first L−Lmax +1 degrees. For the remainder of this section, we suppose that the degree
L of the underlying spherical design is chosen sufficiently large such that (22) holds.

In most real-life applications, it is not possible to measure p in all directions (19) around the
sphere. We therefore modified the above method in [6] to render partial measurements possible:
Let pr

1, . . . , pr
M be a measurement of p at the so-called active positions

(r,θ1,φ1), . . . ,(r,θM,φM), (24)

the corresponding passive positions without any information on p being

(r,θM+1,φM+1), . . . ,(r,θNI ,φNI). (25)

Using this decomposition, we analyze the right-hand side of (22):

pr
lm =

4π

NI

M

∑
i=1

pr
iY

m
l (θi,φi)

∗+
4π

NI

NI

∑
i=M+1

L0

∑
l̄=0

l̄

∑
m̄=−l̄

pr
l̄m̄ ·Y

m̄
l̄ (θi,φi)Y m

l (θi,φi)
∗ (26)

for each l ∈ {0, . . . ,L0}, m ∈ {−l, . . . , l}. By introducing

xr = (pr
00, pr

1−1, pr
10, pr

11, . . . , pr
L0L0

) ∈ C(L0+1)2
, (27)

br = (br
00,b

r
1−1,b

r
10,b

r
11, . . . ,b

r
L0L0

) ∈ C(L0+1)2
, br

lm =
4π

NI

M

∑
i=1

pr
iY

m
l (θi,φi)

∗, (28)

A(xr) = (a00(xr),a1−1(xr),a10(xr),a11(xr), . . . ,aL0L0(x
r)) ∈ C(L0+1)2

, (29)

alm(xr) =
4π

NI

NI

∑
i=M+1

L0

∑
l̄=0

l̄

∑
m̄=−l̄

pr
l̄m̄ ·Y

m̄
l̄ (θi,φi)Y m

l (θi,φi)
∗, (30)

we are able to combine the (L0 +1)2 equations of (26) into

xr = br +A(xr) = A r(xr). (31)

Consequently, the vector xr ∈ C(L0+1)2
of coefficients we are trying to reconstruct is a fixed-

point of the affine map A r : C(L0+1)2 → C(L0+1)2
(A is a linear map), and any reconstruction

method based on the corresponding fixed-point iteration is called a SIFAH method (Spherical
Integration Farfield Acoustical Holography, see [6]). Using this notation, equation (22) corre-
sponds to the degenerate case of (31), that is xr = br or, equivalently,

A r(xr) = br = const. (32)

In this case, a SIFAH iteration would converge in just one step to a fixed point regardless of
how the starting point xr

0 ∈ C(L0+1)2
is chosen.
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1.3 Generalization to non-spherical measurements

We now generalize this approach to allow for active positions with varying radii, e.g. planar
measurements.

Firstly, we fix the so-called reconstruction radius r̄ > r0, and realize that

pr
lm = fl(r̄,r) · pr̄

lm (33)

for each r > r0, where

fl(r̄,r) =
h(2)l (kr)

h(2)l (kr̄)
. (34)

Using this extrapolation rule, we can express the pressure on the sphere with radius r in terms
of its coefficients at r̄:

pr(θ ,φ)

fl(r̄,r)
=

l

∑
m̄=−l

pr
lm̄

fl(r̄,r)
Y m̄

l (θ ,φ)+
L0

∑
l̄=0,l̄ 6=l

l̄

∑
m̄=−l̄

pr
l̄m̄

fl(r̄,r)
Y m̄

l̄ (θ ,φ)

=
l

∑
m̄=−l

pr̄
lm̄Y m̄

l (θ ,φ)+
L0

∑
l̄=0,l̄ 6=l

l̄

∑
m̄=−l̄

pr̄
l̄m̄

fl̄(r̄,r)
fl(r̄,r)

Y m̄
l̄ (θ ,φ). (35)

Secondly, we project these spherical functions onto Y m
l ,

∫
S2

pr(θ ,φ)

fl(r̄,r)
Y m

l (θ ,φ)∗dλ =
l

∑
m̄=−l

pr̄
lm̄

∫
S2

Y m̄
l (θ ,φ)Y m

l (θ ,φ)∗dλ

+
L0

∑
l̄=0,l̄ 6=l

l̄

∑
m̄=−l̄

pr̄
l̄m̄

∫
S2

fl̄(r̄,r)
fl(r̄,r)

Y m̄
l̄ (θ ,φ)Y m

l (θ ,φ)∗dλ

= pr̄
lm +

L0

∑
l̄=0,l̄ 6=l

l̄

∑
m̄=−l̄

pr̄
l̄m̄

∫
S2

fl̄(r̄,r)
fl(r̄,r)

Y m̄
l̄ (θ ,φ)Y m

l (θ ,φ)∗dλ . (36)

This formula may seem silly at first since the left-hand side equals pr̄
lm by definition and the

second term on the right-hand side obviously equals zero. However, a completely analogous
consideration shows that this formula still holds when moving on to varying radii r→ r(θ ,φ),
with r being at least piecewise continuous on the sphere:∫

S2

p(r(θ ,φ),θ ,φ)
fl(r̄,r(θ ,φ))

Y m
l (θ ,φ)∗dλ = pr̄

lm

+
L0

∑
l̄=0,l̄ 6=l

l̄

∑
m̄=−l̄

pr̄
l̄m̄

∫
S2

fl̄(r̄,r(θ ,φ))
fl(r̄,r(θ ,φ))

Y m̄
l̄ (θ ,φ)Y m

l (θ ,φ)∗dλ .

(37)

Now, from this general point of view, the second term on the right-hand does not necessarily
vanish, but quantifies how much the left-hand side deviates from the coefficient pr̄

lm.
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In the next step, we analyze both integrals of (37) numerically using our spherical design
(19), again projected and decomposed into active and passive positions (cf. (24), (25)). We
allow the radius of the former to vary, but the latter are fixed to lie on the reconstruction sphere.
More specifically, the active positions are

(r(θ1,φ1),θ1,φ1), . . . ,(r(θM,φM),θM,φM) = (r1,θ1,φ1), . . . ,(rM,θM,φM), (38)

the passive positions being

(r(θM+1,φM+1),θM+1,φM+1), . . . ,(r(θNI ,φNI),θNI ,φM) = (r̄,θM+1,φM+1), . . . ,(r̄,θNI ,φNI),
(39)

and p1, . . . , pM is a measurement of p at the active positions, i.e.

pi = p(ri,θi,φi). (40)

As before, we suppose that the underlying degree L is chosen sufficiently large in order to work
with equalities. On the one hand, we have

∫
S2

p(r(θ ,φ),θ ,φ)
fl(r̄,r(θ ,φ))

Y m
l (θ ,φ)∗dλ =

4π

NI

NI

∑
i=1

p(r(θi,φi),θi,φi)

fl(r̄,r(θi,φi))
Y m

l (θi,φi)
∗

=
4π

NI

M

∑
i=1

pi

fl(r̄,ri)
Y m

l (θi,φi)
∗

+
4π

NI

NI

∑
i=M+1

pr̄(θi,φi)Y m
l (θi,φi)

∗

=
4π

NI

M

∑
i=1

pi

fl(r̄,ri)
Y m

l (θi,φi)
∗

+
4π

NI

NI

∑
i=M+1

L0

∑
l̄=0

l̄

∑
m̄=−l̄

pr̄
l̄m̄ ·Y

m̄
l̄ (θi,φi)Y m

l (θi,φi)
∗. (41)

On the other hand, when investigating the right-hand side of (37) in this manner, we conclude∫
S2

p(r(θ ,φ),θ ,φ)
fl(r̄,r(θ ,φ))

Y m
l (θ ,φ)∗dλ = pr̄

lm

+
4π

NI

M

∑
i=1

L0

∑
l̄=0,l̄ 6=l

l̄

∑
m̄=−l̄

pr̄
l̄m̄

fl̄(r̄,ri)

fl(r̄,ri)
Y m̄

l̄ (θi,φi)Y m
l (θi,φi)

∗

+
4π

NI

NI

∑
i=M+1

L0

∑
l̄=0,l̄ 6=l

l̄

∑
m̄=−l̄

pr̄
l̄m̄Y m̄

l̄ (θi,φi)Y m
l (θi,φi)

∗. (42)

7
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Finally, we combine (41) and (42) into

pr̄
lm =

4π

NI

M

∑
i=1

pi

fl(r̄,ri)
Y m

l (θi,φi)
∗

+
4π

NI

NI

∑
i=M+1

l

∑
m̄=−l

pr̄
lm̄ ·Y m̄

l (θi,φi)Y m
l (θi,φi)

∗ (43)

− 4π

NI

M

∑
i=1

L0

∑
l̄=0,l̄ 6=l

l̄

∑
m̄=−l̄

pr̄
l̄m̄

fl̄(r̄,ri)

fl(r̄,ri)
Y m̄

l̄ (θi,φi)Y m
l (θi,φi)

∗.

As in the last section, this gives rise to a fixed point equation for the coefficient vector

xr̄ = (pr̄
00, pr̄

1−1, pr̄
10, pr̄

11, . . . , pr̄
L0L0

) ∈ C(L0+1)2
(44)

of p at the reconstruction radius r̄. Since this generalizes (26), or equivalently (31), we will call
any corresponding fixed-point method SIFAH as well.

2 Simulation of spherical cap pistons

A vibrating spherical cap piston with aperture angle α ∈ (0,2π] centered on the north pole of
an otherwise rigid sphere with radius r0 can be described by its surface velocity

vα : [0,π]× [0,2π]→ R, vα(θ ,φ) =V ·aα(θ ,φ), V ∈ R, (45)

the corresponding aperture function aα : [0,π]× [0,2π]→ R is given by

aα(θ ,φ) = 1−H
(

θ − α

2

)
, H(x) =

{
0 x < 0
1 x≥ 0

. (46)

The spherical wave spectrum of vα ,

vα(θ ,φ) =
∞

∑
l=0

l

∑
m=−l

vα
lm ·Y

m
l (θ ,φ), (47)

can be computed via

vα
lm =V δm0

√
(2l +1)π

∫ 1

cos(α

2 )
P0

l (x)dx. (48)

Rotating the spherical cap to be centered in the direction (θ̃ , φ̃) results in

ṽα
lm =

√
4π

2l +1
Y m

l (θ̃ , φ̃)∗ · vα
lm, (49)

8
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respectively. Finally, the radiated pressure in the source-free region is completely determined
by the surface velocity spectrum (see for example [8]):

pvα (r,θ ,φ) =−iρ0c
∞

∑
l=0

l

∑
m=−l

h(2)l (kr)

h(2) ′l (kr0)
vα

lm ·Y
m
l (θ ,φ). (50)

Figure 2: Radial plot of vα for α = 40◦ (left) and its spherical wave expansion up to degree
L = 120 (right)

2.1 Smooth spherical pistons

As hinted at in Figure 2, most of the higher degrees in the expansion (47) of vα are present to
form the discontinuity at the boundary of the spherical cap. In order to avoid this discontinuity,
we also introduce a smooth one-parameter family of spherical pistons with surface velocity

wα : [0,π]× [0,2π]→ R, wα(θ ,φ) =V · exp

(
− (1− cos(θ))2(

1− cos
(

α

2

))2

)
. (51)

Again, we will call α the aperture angle of this piston, but now, when varying θ from 0 to α/2,
the particle velocity smoothly changes from V to V/e. As before, the spherical wave spectrum
of wα can be determined by one-dimensional integration (cf. Figure 3 and Figure 4):

wα
lm =V δm0

√
(2l +1)π

∫ 1

−1
P0

l (x)exp

(
− (1− x)2(

1− cos
(

α

2

))2

)
dx. (52)

Moreover, transformation rule (49) also holds for the coefficients wα
lm when rotating the smooth

spherical piston to be centered in the direction (θ̃ , φ̃), and the radiated sound pressure pwα

9
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corresponding to wα can be computed in complete analogy to (50).

Figure 3: Radial plot of wα for α = 40◦ (left) and its spherical wave expansion up to degree
L = 120 (right)

Figure 4: Coefficients vα
l0 (blue circles) and wα

l0 (yellow boxes) for α = 40◦ in units of V

3 Results

To exemplify the capabilities of SIFAH, we now reconstruct the simulated sound pressure field
generated by one or more (smooth) spherical pistons vibrating at r0 = 2.5m. The simulation

10
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degree is 120 (cf. Figures 2, 3 and 4). In order to determine/reconstruct degrees up to L0 = 35,
we pick the symmetric spherical L-design with L = 71 listed in [9] and choose r̄ = 4m as
reconstruction radius. The simulated sound pressure field is measured using three planar matrix-
shaped microphone arrays: front and rear array each consist of 9×11 microphones, they are of
dimension 2.4m×3.0m, the center array uses 17×11 microphones in a plane of 4.8m×3.0m,
resulting in a total of 385 microphones (see Figure 5).

To employ the SIFAH method, we decompose the chosen spherical design into M = 406
active and 2152 passive directions, the former being those, whose projection lie in one of the
measurement planes of the array. Since none of these projected positions (ri,θi,φi) coincides
with a microphone position, we have – in addition to 28dB of noise – only approximate knowl-
edge of the p1, . . . , pM in the fixed-point equations (43).

Figure 5: Microphone array and reconstruction plane (left) and vibration and reconstruction
radius in relation to array dimensions (right)

The start vector of pressure coefficients at reconstruction radius r̄ in the SIFAH fixed-point
iteration is chosen as

xr̄
0 = 0 ∈ C(L0+1)2

, (53)

the maximal number of iteration steps is 50. Finally, the resulting vector of coefficients is used
to reconstruct the sound pressure in the plane defined by (cf. Figure 5)

(x,y,z) ∈ [−8m,8m]×{8m}× [−1m,1m]. (54)

In the first example, we simulate a spherical cap piston with aperture angle α = 90◦ centered
in the direction (0,1,0) (see section 2). For each of the considered frequencies f = 250Hz,
500Hz, 1000Hz, both the simulated and the reconstructed pressures clearly exhibit the limited
number of simulation degrees (see Figures 6, 7 and 8).

Using the same aperture angle, direction and frequencies, we then simulate a smooth spheri-
cal piston as our second example (see subsection 2.1). Now, simulation and reconstruction are
in excellent agreement with each other (see Figures 9, 10 and 11). Moreover, given the limited

11
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number of simulation degrees, this one-parameter family of pistons seems to be well-suited for
modeling directional sources.

Therefore, the third and final example consists of four smooth spherical pistons (each of the
same maximal surface velocity V ), the directions and aperture angles of which are

(θ1,φ1,α1) = (80◦,110◦,20◦), (θ2,φ2,α2) = (100◦,30◦,100◦),
(θ3,φ3,α3) = (95◦,120◦,40◦), (θ4,φ4,α4) = (100◦,90◦,15◦). (55)

The frequencies under consideration are f = 250Hz, 1000Hz, 4000Hz. As the linear nature of
the approach suggests, the SIFAH method successfully reconstructs the sound pressure field for
this superposition of directional sources (see Figures 12, 13 and 14).

Figure 6: Pressure magnitude (12 dB), single spherical cap piston, f = 250Hz, simulation of
degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)

Figure 7: Pressure magnitude (12 dB), single spherical cap piston, f = 500Hz, simulation of
degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)

Figure 8: Pressure magnitude (12 dB), single spherical cap piston, f = 1000Hz, simulation of
degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)

12
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Figure 9: Pressure magnitude (12 dB), single smooth spherical piston, f = 250Hz, simulation
of degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)

Figure 10: Pressure magnitude (12 dB), single smooth spherical piston, f = 500Hz, simulation
of degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)

Figure 11: Pressure magnitude (12 dB), single smooth spherical piston, f = 1000Hz, simula-
tion of degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)

Figure 12: Pressure magnitude (12 dB), multiple smooth spherical pistons, f = 250Hz, simu-
lation of degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)
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Figure 13: Pressure magnitude (12 dB), multiple smooth spherical pistons, f = 1000Hz, simu-
lation of degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)

Figure 14: Pressure magnitude (12 dB), multiple smooth spherical pistons, f = 4000Hz, simu-
lation of degree 120 (top) and SIFAH reconstruction of degree 35 (bottom)
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