ADCA100

ADC Adapter with 24 BNC Connectors for Voltage Output or Current Supplied Sensors

FEATURES

- Multi channel analog interface SyMBus24 to AD Card Disturbance tolerant symmetrical transmission MDR68 front connector for reliable repetitive plugging
- 24 channel analog interface 24BNC to sensors

24 widely accepted BNC front connectors

- $\pm 10 \mathrm{~V}$ input-voltage range (current sources off)
- 2 V to 22 V with current sources switched on $10 \mathrm{k} \Omega$ input resistance
- 2 Hz to 80 kHz frequency response (with ADC100MLN card)
$4 \times$ switchable $6 \times 3 \mathrm{~mA}$ center contact current supply
- Nonvolatile calibration and configuration memory
- Onboard voltage monitoring
- Green activity LED
- Low power consumption (5 W typically)
- Aluminum box can be placed underneath the mcdRec721x and locks its feet

The ADCA100 is an aluminum adapter box that has been developed for connecting the symmetrical ADC1xxMLN Analog Measurement Cards to up to 24 single-ended voltage output or the common 2 - 20 mA current supplied sensors better known by their registered trademarks ICP®, DeltaTron ${ }^{\circledR}$, Isotron ${ }^{\circledR}$ and Piezotron ${ }^{\circledR}$.

It holds 24 (two rows of 12) BNC connectors and has four switches on the backside each switching 6 of the 24 AC inputs between $\pm 10 \mathrm{~V}$ and 2 V to 22 V input-voltage with 3 mA sensor supply.

Configuration and results of the factory-calibration can be stored in a nonvolatile memory and used for compensation while measuring.

Disturbance tolerant transmission from the MDR68 connector to the Analog Measurement Card is achieved when using the symmetrical mccabAR1xx cable.

TECHNICAL DATA

ADCA100

MDR68	24BNC											
SyMBus24 (to adc1××MLN)	$\xrightarrow{\substack{\text { coniriop }\\}}$	$\xrightarrow{\substack{\text { conzrop } \\ \longrightarrow \text { Oum }}}$	$\xrightarrow{\substack{\text { constop }\\}}$	$\xlongequal{\substack{\text { conation } \\ \longrightarrow \text { man }}}$	$\xrightarrow{\text { constop }} \xlongequal{\text { cuap }}$	$\xlongequal{\substack{\text { conciop } \\ \hline \text { Tun }}}$	$\xrightarrow{\substack{\text { convop } \\ \hline \text { Mn }}}$	$\xrightarrow{\substack{\text { Conerop }\\}}$	$\xrightarrow{\substack{\text { constop }\\}}$	$\xrightarrow{\text { CON1OTOP }}$		$\xrightarrow{\substack{\text { con } 12 \text { Top } \\ \longrightarrow}}$
		$\xrightarrow{\text { conzeot }}$		$\xlongequal{\substack{\text { con } 4 \text { EDO } \\ \hline \text { was }}}$	$\xrightarrow{\substack{\text { consbor }}}$		$\xrightarrow{\text { conveot }} \underset{\substack{\text { cit }}}{ }$	$\xrightarrow{\substack{\text { conseot }}}$	$\xrightarrow{\text { conseot }}$	$\xrightarrow{\substack{\text { compobot } \\ \text { Wua }}}$	$\xlongequal{\substack{\text { COOM1BOTOT }}}$	$\xrightarrow{\substack{\text { comprizot } \\ \hline 1024}}$

MDR68 CONNECTOR SCHEME

1	/SHUTTER	24	OUT08-	47	OUT21-
2	5 V	25	SENSOR 6 V	48	OUT21+
3	IS SERIAL IN	26	OUT09+	49	SENSOR 0 V
4	12 V	27	OUT09-	50	OUT20-
5	SENSOR 6 V	28	OUT10+	51	OUT20+
6	OUT01+	29	OUT10-	52	OUT19-
7	OUT01-	30	SENSOR 6 V	53	OUT19+
8	OUT02+	31	OUT11+	54	SENSOR 0 V
9	OUT02-	32	OUT11-	55	OUT18-
10	SENSOR 6 V	33	OUT12+	56	OUT18+
11	OUT03+	34	OUT12-	57	OUT17-
12	OUT03-	35	/DETECT	58	OUT17+
13	OUT04+	36	0 V	59	SENSOR 0 V
14	OUT04-	37	IS SERIAL OUT	60	OUT16-
15	SENSOR 6 V	38	SWITCH 0 V	61	OUT16+
16	OUT05+	39	SENSOR 0 V	62	OUT15-
17	OUT05-	40	OUT24-	63	OUT15+
18	OUT06+	41	OUT24+	64	SENSOR 0 V
19	OUT06-	42	OUT23-	65	OUT14-
20	SENSOR 6 V	43	OUT23+	66	OUT14+
21	OUT07+	44	SENSOR 0 V	67	OUT13-
22	OUT07-	45	OUT22-	68	OUT13+
23	OUT08+	46	OUT22+		

ADCA100

BLOCK DIAGRAM

MECHANICAL DATA

-					©
	\bigcirc	0	\bigcirc	0	
๑					©

WEIGHT
2140 gr

TECHNICAL DATA

ADCA100

ABSOLUT MAXIMUM RATINGS

Parameter	Min	Max	Unit	Remarks
Power12 V to SWITCH_0 V SENSOR_6 V to SENSOR_0 5 V to 0 V	$\begin{aligned} & -0.3 \\ & -0.3 \\ & -0.3 \\ & \hline \end{aligned}$	$\begin{gathered} 14 \\ 8 \\ 6 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	Stresses above these may cause permanent damage. This is a stress rating only; functional operation at these or any other conditions above is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Only one absolute maximum rating may be applied at any one time.
BNC inputs to SENSOR_0 V*	-23	23	V	
Digital inputs to 0 V	-0.3	4	V	
Storage temperature	- 50	125	${ }^{\circ} \mathrm{C}$	

* when current sources are switched on for sensors like ICP®, min. input voltage reduces to - 0.3 V .

CONFORMITY
Electrical safety
Ingress protection code
Electromagnetic compatibility (EMC)

OPERATING CONDITIONS

Parameter	Min	Typ	Max	Unit	Remarks
Power12 V SWITCH_0 V SENSOR_6 5 V	$\begin{aligned} & 5.0 \\ & 0.0 \\ & 5.2 \\ & 4.7 \end{aligned}$	$\begin{gathered} 12 \\ 6 \\ 5 \end{gathered}$	$\begin{gathered} 12.6 \\ 12.6 \\ 6.7 \\ 5.3 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$	voltages at the MDR68 connector must be guaranteed to be within these limits
Sensor supply (front) 3 mA	2.4	3	3.6	mA	at center contact of each BNC connector, short-circuit-proof
$\begin{array}{ll}\text { BNC inputs } \quad \text { IN to SENSOR_0 V } \\ & \text { IN to SENSOR_O V }\end{array}$	$\begin{gathered} 2 \\ -10 \end{gathered}$		$\begin{aligned} & 22 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	with current sources switched on with current sources switched off
Analog outputs OUT+ to OUTOUT+ to SENSOR_O V OUT- to SENSOR_O V	$\begin{aligned} & -2 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 3.5 \\ 3.5 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	analog outputs are DC-biased at 2.5 V
/DETECT	0		0.7	V	internally connected to 0 V
IS_SERIAL_IN $\begin{array}{r}\text { low } \\ \text { high }\end{array}$	$\begin{gathered} 0 \\ 3.6 \end{gathered}$		$\begin{gathered} 2.4 \\ 5 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	connects to IS_SERIAL_OUT at the ADC1xx_MLN
IS_SERIAL_OUT $\begin{array}{r}\text { low } \\ \text { high }\end{array}$	$\begin{gathered} 0 \\ 2.2 \end{gathered}$		$\begin{gathered} 0.4 \\ 5 \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$	connects to IS_SERIAL_IN at the ADC1xx_MLN
/SHUTTER $\begin{array}{r}\text { low } \\ \text { high }\end{array}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$		$\begin{gathered} 1 \\ 3.3 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	bidirectional (pulled up inside the modRec datarecorder)
Temperature	0		40	${ }^{\circ} \mathrm{C}$	the air surrounding the adapter box must be within these limits
Relative humidity	10		80	\%	not to be operated until condensation is evaporated

TECHNICAL DATA

ADCA100

ELECTRICAL CHARACTERISTICS*					
Parameter	Min	Typ	Max	Unit	Condition
Full-scale input-voltage	6.0	6.8	8.0	$V_{\text {eff }}$	@ current sources switched on/off
AC input-resistance	9.9	10	10.1	k Ω	between BNC inputs and SENSOR_O V
Input referred noise @ current sources switched off @ current sources switched on		$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 25 \\ & 28 \end{aligned}$	μ Veff μ Veff	inputs connected to 50Ω resistors, $20 \mathrm{~Hz}-20 \mathrm{kHz}$-weighted
Dynamic performance Signal to noise ratio (A-weighted) ($20 \mathrm{~Hz}-20 \mathrm{kHz}$-weighted) ($20 \mathrm{~Hz}-40 \mathrm{kHz}$-weighted) ($20 \mathrm{~Hz}-80 \mathrm{kHz}$-weighted) Signal to noise ratio (A-weighted) ($20 \mathrm{~Hz}-20 \mathrm{kHz}$-weighted) ($20 \mathrm{~Hz}-40 \mathrm{kHz}$-weighted) ($20 \mathrm{~Hz}-80 \mathrm{kHz}$-weighted)	$\begin{aligned} & 111 \\ & 109 \\ & 106 \\ & 102 \\ & 110 \\ & 108 \\ & 105 \\ & 102 \end{aligned}$	$\begin{aligned} & 115 \\ & 112 \\ & 109 \\ & 105 \\ & 115 \\ & 112 \\ & 109 \\ & 105 \end{aligned}$		$\begin{gathered} d B(A) \\ d B \\ d B \\ d B \\ d B(A) \\ d B \\ d B \\ d B \end{gathered}$	full-scale input related to noise @ current sources switched off @ current sources switched on
Total harmonic distortion + noise @ current sources switched off @ current sources switched on		$\begin{array}{r} -72 \\ -65 \\ \hline \end{array}$	$\begin{aligned} & -66 \\ & -60 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	most distorted channel @ input $1 \mathrm{kHz},-3 \mathrm{~dB}$, $20 \mathrm{~Hz}-20 \mathrm{kHz}$-weighted
Output referred offset-error Input referred offset-error		$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & 15 \\ & 73 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$	worst channel @ inputs connected to 50Ω resistors
Channel separation Crosstalk @ 1 kHz ($800 \mathrm{~Hz}-1250 \mathrm{~Hz}$-weighted) Crosstalk @ 10 kHz (8 kHz - 15 kHz -weighted)		$\begin{aligned} & -84 \\ & -84 \end{aligned}$	$\begin{aligned} & -80 \\ & -70 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	most disturbed channel related to driven channel @ input- 3 dB
Power supply current $(12 \mathrm{~V})$ (SENSOR_6 V) $(5 \mathrm{~V})$		$\begin{gathered} 7 \\ 713 \\ 6 \end{gathered}$	$\begin{gathered} 20 \\ 1000 \\ 20 \end{gathered}$	mA mA mA	@ inputs connected to 50Ω resistors
Power consumption $(12 \mathrm{~V})$ (SENSOR_6 V) $(5 \mathrm{~V})$ $($ total)		$\begin{aligned} & 0.08 \\ & 4.63 \\ & 0.03 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 6.70 \\ & 0.11 \\ & 7.06 \end{aligned}$	$\begin{aligned} & W \\ & w \\ & W \\ & W \end{aligned}$	supply currents from above, voltages measured on the board

FREQUENCY RESPONSE*

[^0]
TECHNICAL DATA

ADCA100

THEORY OF OPERATION

Signals entering the ADCA100 are passing ESD-protections and line inductors where high-frequency-components are removed that the following amplifiers cannot damp sufficiently.

Each of four switches can connect a group of six inputs to low noise 3 mA current regulators operating from a filtered 6 V to 24 V step up voltage converter.

Symmetrical-output-amplifiers are used to level from single-ended 7 Veff input- to differential 1.4 Veff output-voltagerange allowing for disturbance tolerant connection to ADC10xMLN or the low power ADC11xMLN Analog Measurement Cards by connecting the MDR68 connectors with a symmetrical mccabAR1xx cable.

Capacitors set the lower end of the frequency range to 1.6 Hz and the upper end to 150 kHz resulting in a 2 Hz to 80 kHz frequency range together with an ADC100MLN card at 192 kHz sampling frequency.
/DETECT connects to 0 V to inform the measurement card that a device is present.

A microcontroller communicates with the AD card via optically decoupled IS_SERIAL_IN and IS_SERIAL_OUT and provides for reading and writing of the nonvolatile configuration and calibration memory as well as for monitoring the three supply-voltages.

A green front-panel-LED is connected to a 12 mA current source and can be switched on and off from the ADC1xxMLN using SWITCH_0 V.
/SHUTTER is prepared for future use.

Information furnished by gfai tech is believed to be accurate and reliable. However, no responsibility is assumed by gfai tech for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice.

[^0]: * together with ADC100MLN card

